Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.097
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255994

RESUMO

Transketolase (TKT) is an essential thiamine diphosphate (ThDP)-dependent enzyme of the non-oxidative branch of the pentose phosphate pathway, with the glucose-6P flux through the pathway regulated in various medically important conditions. Here, we characterize the brain TKT regulation by acylation in rats with perturbed thiamine-dependent metabolism, known to occur in neurodegenerative diseases. The perturbations are modeled by the administration of oxythiamine inhibiting ThDP-dependent enzymes in vivo or by reduced thiamine availability in the presence of metformin and amprolium, inhibiting intracellular thiamine transporters. Compared to control rats, chronic administration of oxythiamine does not significantly change the modification level of the two detected TKT acetylation sites (K6 and K102) but doubles malonylation of TKT K499, concomitantly decreasing 1.7-fold the level of demalonylase sirtuin 5. The inhibitors of thiamine transporters do not change average levels of TKT acylation or sirtuin 5. TKT structures indicate that the acylated residues are distant from the active sites. The acylations-perturbed electrostatic interactions may be involved in conformational shifts and/or the formation of TKT complexes with other proteins or nucleic acids. Acetylation of K102 may affect the active site entrance/exit and subunit interactions. Correlation analysis reveals that the action of oxythiamine is characterized by significant negative correlations of K499 malonylation or K6 acetylation with TKT activity, not observed upon the action of the inhibitors of thiamine transport. However, the transport inhibitors induce significant negative correlations between the TKT activity and K102 acetylation or TKT expression, absent in the oxythiamine group. Thus, perturbations in the ThDP-dependent catalysis or thiamine transport manifest in the insult-specific patterns of the brain TKT malonylation and acetylations.


Assuntos
Sirtuínas , Tiamina Pirofosfato , Transcetolase , Animais , Ratos , Acilação , Encéfalo , Proteínas de Membrana Transportadoras , Oxitiamina , Tiamina/farmacologia , Transcetolase/metabolismo
2.
Bioorg Med Chem Lett ; 98: 129571, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38036274

RESUMO

Pyruvate dehydrogenase complex (PDHc) is suppressed in some cancer types but overexpressed in others. To understand its contrasting oncogenic roles, there is a need for selective PDHc inhibitors. Its E1-subunit (PDH E1) is a thiamine pyrophosphate (TPP)-dependent enzyme and catalyses the first and rate-limiting step of the complex. In a recent study, we reported a series of ester-based thiamine analogues as selective TPP-competitive PDH E1 inhibitors with low nanomolar affinity. However, when the ester linker was replaced with an amide for stability reasons, the binding affinity was significantly reduced. In this study, we show that an amino-oxetane bioisostere of the amide improves the affinity and maintains stability towards esterase-catalysed hydrolysis.


Assuntos
Complexo Piruvato Desidrogenase , Tiamina Pirofosfato , Tiamina , Amidas , Ésteres , Oxirredutases , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Complexo Piruvato Desidrogenase/metabolismo , Piruvatos , Tiamina/farmacologia , Tiamina Pirofosfato/metabolismo , Tiamina Pirofosfato/farmacologia
3.
Metab Brain Dis ; 38(8): 2603-2613, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37906392

RESUMO

Hypothyroidism causes learning and memory impairment. Considering the neuroprotective properties of thiamine (Vitamin B1), this study was conducted to investigate the effects of thiamine on acetylcholinesterase (AChE) activity, oxidative damage, and memory deficits in hypothyroid rats.In this study, 50 rats (21 days old) were randomly divided into 5 groups and treated with propylthiouracil (0.05% in drinking water) and thiamine (50, 100, and 200 mg/kg, oral) for 7 weeks. Following that, Morris water maze (MWM) and passive avoidance (PA) tests were performed. Finally, oxidative stress indicators and AChE activity were measured in brain tissue.Treatment of hypothyroid rats with thiamine, especially at 100 and 200 mg/kg, alleviated the ability to remember the location of the platform as reflected by less time spent and distance to reach the platform, during the MWM test (P < 0.05 to P < 0.001). In the PA test, the latency to enter the dark chamber and light stay time were increased in rats who received thiamine compared to the hypothyroid group (P < 0.05 to P < 0.001). In addition, thiamine increased the levels of total thiol groups and superoxide dismutase while decreasing the levels of malondialdehyde and AChE.Our results suggest that thiamine supplementation could effectively improve memory loss in a rat model of hypothyroidism. The positive effects of thiamin on the learning and memory of hypothyroid rats may be due to amelioration of redox hemostasis and cholinergic disturbance.


Assuntos
Acetilcolinesterase , Hipotireoidismo , Ratos , Animais , Acetilcolinesterase/metabolismo , Ratos Wistar , Hipocampo/metabolismo , Estresse Oxidativo , Transtornos da Memória/tratamento farmacológico , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/complicações , Hipotireoidismo/tratamento farmacológico , Tiamina/farmacologia , Tiamina/uso terapêutico , Aprendizagem em Labirinto
4.
Org Biomol Chem ; 21(32): 6531-6536, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37522836

RESUMO

A common approach to studying thiamine pyrophosphate (TPP)-dependent enzymes is by chemical inhibition with thiamine/TPP analogues which feature a neutral aromatic ring in place of the positive thiazolium ring of TPP. These are potent inhibitors but their preparation generally involves multiple synthetic steps to construct the central ring. We report efficient syntheses of novel, open-chain thiamine analogues which potently inhibit TPP-dependent enzymes and are predicted to share the same binding mode as TPP. We also report some open-chain analogues that inhibit pyruvate dehydrogenase E1-subunit (PDH E1) and are predicted to occupy additional pockets in the enzyme other than the TPP-binding pockets. This opens up new possibilities for increasing the affinity and selectivity of the analogues for PDH, which is an established anti-cancer target.


Assuntos
Tiamina Pirofosfato , Tiamina , Tiamina Pirofosfato/farmacologia , Tiamina Pirofosfato/metabolismo , Tiamina/farmacologia , Tiamina/metabolismo , Difosfatos
5.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511056

RESUMO

Thiamine (vitamin B1) is essential for the brain. This is attributed to the coenzyme role of thiamine diphosphate (ThDP) in glucose and energy metabolism. The synthetic thiamine prodrug, the thioester benfotiamine (BFT), has been extensively studied and has beneficial effects both in rodent models of neurodegeneration and in human clinical studies. BFT has no known adverse effects and improves cognitive outcomes in patients with mild Alzheimer's disease. In cell culture and animal models, BFT has antioxidant and anti-inflammatory properties that seem to be mediated by a mechanism independent of the coenzyme function of ThDP. Recent in vitro studies show that another thiamine thioester, O,S-dibenzoylthiamine (DBT), is even more efficient than BFT, especially with respect to its anti-inflammatory potency, and is effective at lower concentrations. Thiamine thioesters have pleiotropic properties linked to an increase in circulating thiamine concentrations and possibly in hitherto unidentified open thiazole ring derivatives. The identification of the active neuroprotective metabolites and the clarification of their mechanism of action open extremely promising perspectives in the field of neurodegenerative, neurodevelopmental, and psychiatric conditions. The present review aims to summarize existing data on the neuroprotective effects of thiamine thioesters and give a comprehensive account.


Assuntos
Doenças Neurodegenerativas , Animais , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Tiamina/farmacologia , Tiamina/uso terapêutico , Tiamina Pirofosfato , Coenzimas
6.
Ecotoxicol Environ Saf ; 263: 115307, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499386

RESUMO

Urban garden plants are frequently affected by drought, which can hinder their growth, development, and greening effect. Previous studies have indicated that Chinese wingnut (Pterocarya stenoptera) responds to drought stress by increasing the expression of thiamine synthesis genes. In this study, it was found that exogenous thiamine can effectively alleviate the negative effects of drought stress on plants. Forward transcriptome sequencing and physiological tests were further conducted to reveal the molecular mechanism of thiamine in alleviating drought stress. Results showed that exogenous thiamine activated the expression of eight chlorophyll synthesis genes in Chinese wingnut under drought stress. Moreover, physiological indicators proved that chlorophyll content increased in leaves of Chinese wingnut with thiamine treatment under drought stress. Photosynthesis genes were also activated in Chinese wingnut treated with exogenous thiamine under drought stress, as supported by photosynthetic indicators PIabs and PItotal. Additionally, exogenous thiamine stimulated the expression of genes in the auxin-activated signaling pathway, thus attenuating the effects of drought stress. This study demonstrates the molecular mechanism of thiamine in mitigating the effects of drought stress on non-model woody plants lacking transgenic systems. This study also provides an effective method to mitigate the negative impacts of drought stress on plants.


Assuntos
Secas , Juglandaceae , Tiamina , Transcriptoma , Clorofila , Fotossíntese/genética , Estresse Fisiológico/genética , Tiamina/genética , Tiamina/farmacologia , Juglandaceae/genética , Juglandaceae/metabolismo , Juglandaceae/fisiologia , China
7.
Clin Pharmacol Ther ; 114(2): 381-392, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37151050

RESUMO

Trimethoprim is predicted to inhibit several thiamine transporters, including the primary thiamine intestinal absorptive transporter, ThTR-2, and the hepatic and renal organic cation transporters, OCT1, OCT2, and MATEs. To investigate the effect of trimethoprim on thiamine absorption, studies were conducted in cells, mice, and healthy volunteers and supported by use of real-world data. In a randomized, crossover clinical study, seven healthy volunteers were given a single oral dose of thiamine or thiamine plus trimethoprim, followed by blood sampling. The thiamine area under the curve (AUC) increased with trimethoprim co-administration (P value = 0.031). Similar results were seen in mice. Trimethoprim appeared to act on thiamine absorption through inhibition of hepatic OCT1 as evidenced from its ability to modulate levels of isobutyrylcarnitine and propionylcarnitine, OCT1 biomarkers identified from metabolomic analyses. Real-world data further supported this finding, showing an association between trimethoprim use and higher levels of triglycerides, LDL cholesterol, and total cholesterol, consistent with OCT1 inhibition (P values: 2.2 × 10-16 , 5.75 × 10-7 , and 5.82 × 10-7 , respectively). These findings suggest that trimethoprim increases plasma levels of thiamine by inhibiting hepatic OCT1. Trimethoprim reduced urinary excretion and clearance of biomarkers for OCT2 and MATEs, consistent with inhibition of renal organic cation transporters. This inhibition did not appear to play a role in the observed increases in thiamine levels. This study highlights the potential for drug-nutrient interactions involving transporters, in addition to transporters' established role in drug-drug interactions.


Assuntos
Tiamina , Trimetoprima , Animais , Camundongos , Humanos , Tiamina/farmacologia , Trimetoprima/farmacologia , Proteínas de Membrana Transportadoras , Interações Alimento-Droga , Biomarcadores , Nutrientes , Cátions , Proteínas de Transporte de Cátions Orgânicos , Transportador 2 de Cátion Orgânico , Células HEK293
8.
Bioorg Chem ; 138: 106602, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37201323

RESUMO

Thiamine diphosphate (ThDP), the bioactive form of vitamin B1, is an essential coenzyme needed for processes of cellular metabolism in all organisms. ThDP-dependent enzymes all require ThDP as a coenzyme for catalytic activity, although individual enzymes vary significantly in substrate preferences and biochemical reactions. A popular way to study the role of these enzymes through chemical inhibition is to use thiamine/ThDP analogues, which typically feature a neutral aromatic ring in place of the positively charged thiazolium ring of ThDP. While ThDP analogues have aided work in understanding the structural and mechanistic aspects of the enzyme family, at least two key questions regarding the ligand design strategy remain unresolved: 1) which is the best aromatic ring? and 2) how can we achieve selectivity towards a given ThDP-dependent enzyme? In this work, we synthesise derivatives of these analogues covering all central aromatic rings used in the past decade and make a head-to-head comparison of all the compounds as inhibitors of several ThDP-dependent enzymes. Thus, we establish the relationship between the nature of the central ring and the inhibitory profile of these ThDP-competitive enzyme inhibitors. We also demonstrate that introducing a C2-substituent onto the central ring to explore the unique substrate-binding pocket can further improve both potency and selectivity.


Assuntos
Tiamina Pirofosfato , Tiamina , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo , Tiamina/farmacologia , Tiamina/química , Especificidade por Substrato , Coenzimas/química , Biocatálise
9.
Chem Biol Interact ; 381: 110544, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37224990

RESUMO

One of the serious complications of diabetes mellitus is diabetic nephropathy (DN) which may finally lead to renal failure. The current study aimed to explore the effect of sulbutiamine, a synthetic derivative of vitamin B1, in streptozotocin (STZ)-induced DN and related pathways. Experimental DN was successfully induced 8 weeks after a single low dose of STZ (45 mg/kg, I.P.). Four groups of rats were used in this study and divided randomly into: control group, diabetic group, sulbutiamine control (control + sulbutiamine) group, and sulbutiamine-treated (60 mg/kg) (diabetic + sulbutiamine) group. The fasting blood glucose level (BGL), the levels of kidney injury molecule-1 (Kim-1), urea and creatinine in serum, as well as the renal content of malondialdehyde (MDA), protein kinase C (PKC), toll-like receptor-4 (TLR-4) and nuclear factor kappa B (NF-κB) were determined. Additionally, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and transforming growth factor-ß1 (TGF-ß1) contents were evaluated immunohistochemically. Sulbutiamine treatment decreased fasting BGL and improved the kidney function tests compared to diabetic rats. Moreover, TLR-4, NF-κB, MDA and PKC contents were substantially reduced following sulbutiamine treatment compared to the diabetic group. Sulbutiamine managed to obstruct the production of the pro-inflammatory TNF-α and IL-1ß and suppressed TGF-ß1 level, in addition to attenuating the histopathological changes associated with DN. This study revealed, for the first time, the ability of sulbutiamine to ameliorate STZ-induced diabetic nephropathy in rats. This nephroprotective outcome of sulbutiamine against DN may be attributed to glycemic control in addition to its anti-oxidative, anti-inflammatory and anti-fibrotic effects.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Rim , NF-kappa B/metabolismo , Estresse Oxidativo , Estreptozocina , Tiamina/farmacologia , Tiamina/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Plant Signal Behav ; 18(1): 2186045, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37016728

RESUMO

Drought stress poorly impacts many morphological and physio-biochemical processes in plants. Pea (Pisum sativum L.) plants are highly nutritious crops destined for human consumption; however, their productivity is threatened under drought stress. Thiamine (vitamin B1) is well-known essential micronutrient, acting as a cofactor in key metabolic processes. Therefore, this study was designed to examine the protective effect of foliar application of thiamine (0, 250, and 500 ppm) on two varieties of pea plants under drought stress. Here, we conducted the pot experiment at the Government College Women University, Faisalabad, to investigate the physio-biochemical and morphological traits of two pea varieties (sarsabz and metior) grown under drought stress and thiamine treatment. Drought stress was applied to plants after germination period of 1 month. Results showed that root fresh and dry weight, shoot fresh and dry weight, number of pods, leaf area, total soluble sugars, total phenolics, total protein contents, catalase, peroxidase, and mineral ions were reduced against drought stress. However, the application of thiamine (both 250 and 500 ppm) overcome the stress and also enhances these parameters, and significantly increases the antioxidant activities (catalase and peroxidase). Moreover, the performance of sarsabz was better under control and drought stress conditions than metior variety. In conclusion, the exogenous application of thiamine enabled the plants to withstand drought stress conditions by regulating several physiological and biochemical mechanisms. In agriculture, it is a great latent to alleviate the antagonistic impact of drought stress on crops through the foliar application of thiamine.


Assuntos
Tiamina , Feminino , Humanos , Catalase/metabolismo , Tiamina/farmacologia , Tiamina/metabolismo , Secas , Antioxidantes/metabolismo , Peroxidase/metabolismo
11.
Clin Hemorheol Microcirc ; 84(2): 111-123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911931

RESUMO

OBJECTIVE: To investigate the effects of hydrocortisone combined with vitamin C and vitamin B1 versus hydrocortisone on sublingual microcirculation in septic shock patients. METHODS: This pilot study enrolled septic shock patients admitted to the ICU of a tertiary teaching hospital from February 2019 to January 2020. We randomly assigned the enrolled patients to the treatment group (hydrocortisone combined with vitamin C and vitamin B1 added to standard care) and the control group (hydrocortisone alone added to standard care) in a 1 : 1 ratio. The primary outcome was perfused small vascular density (sPVD) monitored by a sublingual microcirculation imaging system at 24 hours after treatment. RESULTS: Twelve patients in the treatment group and ten in the control group completed the study. The baseline characteristics were comparable between the groups. No statistically significant difference was found in the sPVD between the groups at baseline. The sPVD in the treatment group was significantly higher than that in the control group at 4 hours after treatment (mean difference, 7.042; 95% CI, 2.227-11.857; P = 0.009) and 24 hours after treatment (mean difference, 7.075; 95% CI, 2.390-11.759; P = 0.008). CONCLUSIONS: Compared with hydrocortisone, hydrocortisone combined with vitamin C and vitamin B1 significantly improves microcirculation in septic shock patients.


Assuntos
Choque Séptico , Humanos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Hidrocortisona/farmacologia , Hidrocortisona/uso terapêutico , Microcirculação , Projetos Piloto , Choque Séptico/tratamento farmacológico , Tiamina/farmacologia , Tiamina/uso terapêutico
12.
J Am Heart Assoc ; 12(7): e028558, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36942758

RESUMO

Background Thiamine supplementation has demonstrated protective effects in a mouse model of cardiac arrest. The aim of this study was to investigate the neuroprotective effects of thiamine in a clinically relevant large animal cardiac arrest model. The hypothesis was that thiamine reduces neurological injury evaluated by neuron-specific enolase levels. Methods and Results Pigs underwent myocardial infarction and subsequently 9 minutes of untreated cardiac arrest. Twenty minutes after successful resuscitation, the pigs were randomized to treatment with either thiamine or placebo. All pigs underwent 40 hours of intensive care and were awakened for assessment of functional neurological outcome up until 9 days after cardiac arrest. Nine pigs were included in both groups, with 8 in each group surviving the entire intensive care phase. Mean area under the curve for neuron-specific enolase was similar between groups, with 81.5 µg/L per hour (SD, 20.4) in the thiamine group and 80.5 µg/L per hour (SD, 18.3) in the placebo group, with an absolute difference of 1.0 (95% CI, -57.8 to 59.8; P=0.97). Likewise, there were no absolute difference in neurological deficit score at the end of the protocol (2 [95% CI, -38 to 42]; P=0.93). There was no absolute mean group difference in lactate during the intensive care period (1.1 mmol/L [95% CI, -0.5 to 2.7]; P=0.16). Conclusions In this randomized, blinded, placebo-controlled trial using a pig cardiac arrest model with myocardial infarction and long intensive care and observation for 9 days, thiamine showed no effect in changes to functional neurological outcome or serum levels of neuron-specific enolase. Thiamine treatment had no effect on lactate levels after successful resuscitation.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Infarto do Miocárdio , Animais , Reanimação Cardiopulmonar/métodos , Modelos Animais de Doenças , Parada Cardíaca/tratamento farmacológico , Parada Cardíaca/etiologia , Ácido Láctico , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Fosfopiruvato Hidratase , Suínos , Tiamina/farmacologia , Tiamina/uso terapêutico
13.
Redox Biol ; 62: 102669, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933393

RESUMO

Brain injury is accompanied by neuroinflammation, accumulation of extracellular glutamate and mitochondrial dysfunction, all of which cause neuronal death. The aim of this study was to investigate the impact of these mechanisms on neuronal death. Patients from the neurosurgical intensive care unit suffering aneurysmal subarachnoid hemorrhage (SAH) were recruited retrospectively from a respective database. In vitro experiments were performed in rat cortex homogenate, primary dissociated neuronal cultures, B35 and NG108-15 cell lines. We employed methods including high resolution respirometry, electron spin resonance, fluorescent microscopy, kinetic determination of enzymatic activities and immunocytochemistry. We found that elevated levels of extracellular glutamate and nitric oxide (NO) metabolites correlated with poor clinical outcome in patients with SAH. In experiments using neuronal cultures we showed that the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the glutamate-dependent segment of the tricarboxylic acid (TCA) cycle, is more susceptible to the inhibition by NO than mitochondrial respiration. Inhibition of OGDHC by NO or by succinyl phosphonate (SP), a highly specific OGDHC inhibitor, caused accumulation of extracellular glutamate and neuronal death. Extracellular nitrite did not substantially contribute to this NO action. Reactivation of OGDHC by its cofactor thiamine (TH) reduced extracellular glutamate levels, Ca2+ influx into neurons and cell death rate. Salutary effect of TH against glutamate toxicity was confirmed in three different cell lines. Our data suggest that the loss of control over extracellular glutamate, as described here, rather than commonly assumed impaired energy metabolism, is the critical pathological manifestation of insufficient OGDHC activity, leading to neuronal death.


Assuntos
Ácido Glutâmico , Complexo Cetoglutarato Desidrogenase , Ratos , Animais , Ácido Glutâmico/metabolismo , Estudos Retrospectivos , Citoplasma/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Tiamina/metabolismo , Tiamina/farmacologia , Óxido Nítrico/metabolismo
14.
Nutrients ; 15(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36771332

RESUMO

The purpose of this research was to investigate the effects of protocatechuic acid (PCA) at doses of 50 and 100 mg/kg on the development of unfavourable changes in cognitive processes in a pyrithiamine-induced thiamine deficiency (PTD) model of the Wernicke-Korsakoff syndrome (WKS) in rats. The effects of PCA were assessed at the behavioural and biochemical levels. Behavioural analysis was conducted using the Foot Fault test (FF), Bar test, Open Field test, Novel Object Recognition test (NOR), Hole-Board test and Morris Water Maze test (MWM). Biochemical analysis consisting of determination of concentration and turnover of neurotransmitters in selected structures of the rat CNS was carried out using high-performance liquid chromatography. PTD caused catalepsy (Bar test) and significantly impaired motor functions, leading to increased ladder crossing time and multiplied errors due to foot misplacement (FF). Rats with experimentally induced WKS showed impaired consolidation and recall of spatial reference memory in the MWM test, while episodic memory related to object recognition in the NOR was unimpaired. Compared to the control group, rats with WKS showed reduced serotonin levels in the prefrontal cortex and changes in dopamine and/or norepinephrine metabolites in the prefrontal cortex, medulla oblongata and spinal cord. PTD was also found to affect alanine, serine, glutamate, and threonine levels in certain areas of the rat brain. PCA alleviated PTD-induced cataleptic symptoms in rats, also improving their performance in the Foot Fault test. In the MWM, PCA at 50 and 100 mg/kg b.w. improved memory consolidation and the ability to retrieve acquired information in rats, thereby preventing unfavourable changes caused by PTD. PCA at both tested doses was also shown to have a beneficial effect on normalising PTD-disrupted alanine and glutamate concentrations in the medulla oblongata. These findings demonstrate that certain cognitive deficits in spatial memory and abnormalities in neurotransmitter levels persist in rats that have experienced an acute episode of PTD, despite restoration of thiamine supply and long-term recovery. PCA supplementation largely had a preventive effect on the development of these deficits, to some extent also normalising neurotransmitter concentrations in the brain.


Assuntos
Síndrome de Korsakoff , Deficiência de Tiamina , Ratos , Animais , Piritiamina/efeitos adversos , Síndrome de Korsakoff/induzido quimicamente , Deficiência de Tiamina/induzido quimicamente , Deficiência de Tiamina/tratamento farmacológico , Tiamina/farmacologia , Neurotransmissores
15.
Braz J Otorhinolaryngol ; 89(2): 305-312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36446695

RESUMO

OBJECTIVE: In this study, we created an animal model to demonstrate the effects of thiamine on the hearing pathways of new-borns during pregnancy and lactation by inducing a dietary thiamine deficiency in the mother. METHODS: The study included 16 female Wistar albino rats. The animals were separated into four groups and provided the appropriate amounts of dietary thiamine according to their groups during pre-pregnancy, pregnancy, and lactation periods. Three pups from each mother were included in the study, and 12 pups were selected from each group. On the fortieth day after birth, the auditory pathways of 48 pups in the 4 groups were examined electro physiologically and ultra-structurally. RESULTS: In Group N-N, morphology of hair cells stereocilia degeneration was not obtained in all turns of cochlea. In Group N-T, Inner Hair Cells (IHCs) and Outher Hair Cells (OHCs) stereocilia didn't show degeneration in all turns of cochlea but had rupture inrows of HCs stereocilia. In group T-N IHCs stereocilia less degeneration was observed in all turns of cochlea. OHC stereocilia partial loss was observed only in basal turn of cochlea. In Group T-T IHCs stereocilia was observed less degeneration and rupture in all turns of cochlea. CONCLUSION: Thiamine is vital for the development of cochlear hair cells during both prenatal and postnatal periods. Even partial deficiency of thiamine causes significant degeneration to the auditory pathway. LEVEL OF EVIDENCE: The level of evidence of this article is 5. This article is an experimental animal and laboratory study.


Assuntos
Vias Auditivas , Deficiência de Tiamina , Gravidez , Animais , Ratos , Feminino , Ratos Wistar , Células Ciliadas Auditivas , Cóclea , Tiamina/farmacologia , Células Ciliadas Auditivas Externas
16.
Nat Commun ; 13(1): 7791, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543778

RESUMO

The complexity of affected brain regions and cell types is a challenge for Huntington's disease (HD) treatment. Here we use single nucleus RNA sequencing to investigate molecular pathology in the cortex and striatum from R6/2 mice and human HD post-mortem tissue. We identify cell type-specific and -agnostic signatures suggesting oligodendrocytes (OLs) and oligodendrocyte precursors (OPCs) are arrested in intermediate maturation states. OL-lineage regulators OLIG1 and OLIG2 are negatively correlated with CAG length in human OPCs, and ATACseq analysis of HD mouse NeuN-negative cells shows decreased accessibility regulated by OL maturation genes. The data implicates glucose and lipid metabolism in abnormal cell maturation and identify PRKCE and Thiamine Pyrophosphokinase 1 (TPK1) as central genes. Thiamine/biotin treatment of R6/1 HD mice to compensate for TPK1 dysregulation restores OL maturation and rescues neuronal pathology. Our insights into HD OL pathology spans multiple brain regions and link OL maturation deficits to abnormal thiamine metabolism.


Assuntos
Biotina , Doença de Huntington , Oligodendroglia , Tiamina , Animais , Humanos , Camundongos , Biotina/metabolismo , Biotina/farmacologia , Suplementos Nutricionais , Modelos Animais de Doenças , Doença de Huntington/metabolismo , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Núcleo Solitário/metabolismo , Tiamina/metabolismo , Tiamina/farmacologia
17.
Org Biomol Chem ; 20(45): 8855-8858, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36326656

RESUMO

Inhibition of thiamine pyrophosphate (TPP)-dependent enzymes with thiamine/TPP analogues that have the central thiazolium ring replaced with other rings is well established, but a limited number of central rings have been reported. We report a novel analogue, pyrrothiamine, with a central pyrrole ring. We further develop pyrrothiamine derivatives as potent and selective inhibitors of pyruvate dehydrogenase, which might have anti-cancer potential.


Assuntos
Tiamina Pirofosfato , Tiamina , Tiamina/farmacologia , Tiamina Pirofosfato/farmacologia , Difosfatos , Oxirredutases , Piruvatos , Complexo Piruvato Desidrogenase
18.
Am J Physiol Cell Physiol ; 323(6): C1664-C1680, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342158

RESUMO

The aim of this study was to examine the effect of TNFα (i.e., a predominant proinflammatory cytokine produced during chronic gut inflammation) on colonic uptake of thiamin pyrophosphate (TPP) and free thiamin, forms of vitamin B1 that are produced by the gut microbiota and are absorbed via distinct carrier-mediated systems. We utilized human-derived colonic epithelial CCD841 and NCM460 cells, human differentiated colonoid monolayers, and mouse intact colonic tissue preparations together with an array of cellular/molecular approaches in our investigation. The results showed that exposure of colonic epithelial cells to TNFα leads to a significant inhibition in TPP and free thiamin uptake. This inhibition was associated with: 1) a significant suppression in the level of expression of the colonic TPP transporter (cTPPT; encoded by SLC44A4), as well as thiamin transporters-1 & 2 (THTR-1 & -2; encoded by SLC19A2 & SLC19A3, respectively); 2) marked inhibition in activity of the SLC44A4, SLC19A2, and SLC19A3 promoters; and 3) significant suppression in level of expression of nuclear factors that are needed for activity of these promoters (i.e., CREB-1, Elf-3, NF-1A, SP-1). Furthermore, the inhibitory effects were found to be mediated via JNK and ERK1/2 signaling pathways. We also examined the level of expression of cTPPT and THTR-1 & -2 in colonic tissues of patients with active ulcerative colitis and found the levels to be significantly lower than in healthy controls. These findings demonstrate that exposure of colonocytes to TNFα suppresses TPP and free thiamin uptake at the transcriptional level via JNK- and Erk1/2-mediated pathways.


Assuntos
Tiamina Pirofosfato , Fator de Necrose Tumoral alfa , Humanos , Camundongos , Animais , Tiamina Pirofosfato/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Acinares/metabolismo , Tiamina/metabolismo , Tiamina/farmacologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
19.
Biomed Pharmacother ; 156: 113986, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411653

RESUMO

Mutations in the gene encoding the RNA/DNA-binding protein Fused in Sarcoma (FUS) have been detected in familial amyotrophic lateral sclerosis (ALS) patients. FUS has been found to be a critical component of the oxidative damage repair complex that might explain its role in neurodegeneration. Here, we examined what impact antioxidant treatment with thiamine (vitamine B1), or its more bioavailable derivative O,S-dibenzoylthiamine (DBT), would have on the hallmarks of pathology in the FUS[1-359]-transgenic mouse model of ALS. From 8-weeks old, in the pre-symptomatic phase of disease, animals received either thiamine, DBT (200 mg/kg/day), or vehicle for 6 weeks. We examined physiological, behavioral, molecular and histological outcomes, as well as the serum metabolome using nuclear magnetic resonance (NMR). The DBT-treated mice displayed improvements in physiological outcomes, motor function and muscle atrophy compared to vehicle, and the treatment normalized levels of brain glycogen synthase kinase-3ß (GSK-3ß), GSK-3ß mRNA and IL-1ß mRNA in the spinal cord. Analysis of the metabolome revealed an increase in the levels of choline and lactate in the vehicle-treated FUS mutants alone, which is also elevated in the cerebrospinal fluid of ALS patients, and reduced glucose and lipoprotein concentrations in the FUS[1-359]-tg mice, which were not the case in the DBT-treated mutants. The administration of thiamine had little impact on the outcome measures, but it did normalize circulating HDL levels. Thus, our study shows that DBT therapy in FUS mutants is more effective than thiamine and highlights how metabolomics may be used to evaluate therapy in this model.


Assuntos
Esclerose Amiotrófica Lateral , Animais , Camundongos , Esclerose Amiotrófica Lateral/tratamento farmacológico , Proteína FUS de Ligação a RNA/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Atrofia Muscular , Camundongos Transgênicos , Tiamina/farmacologia , Tiamina/uso terapêutico , Metaboloma , RNA Mensageiro/metabolismo
20.
Ter Arkh ; 94(5): 689-694, 2022 Jun 17.
Artigo em Russo | MEDLINE | ID: mdl-36286970

RESUMO

In this article, we try to present the available data regarding the pharmacokinetics and pharmacodynamics of sulbutiamine (Enerion), the mechanisms of its anti-asthenic action. Then we analyze and summarize the available evidence base considering the efficacy and safety of Enerion for the treatment of asthenic syndromes. Then we compare Enerion with some other drugs. The results of our review indicate the high efficacy and safety of sulbutiamine in the treatment of asthenia. Our results also show that Enerion has some clinically relevant advantages over all alternatives we reviewed there.


Assuntos
Astenia , Tiamina , Humanos , Astenia/tratamento farmacológico , Tiamina/farmacologia , Tiamina/uso terapêutico , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...